

STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY

Environment department, Room No. 217, 2nd floor, Mantralaya, Annexe, Mumbai- 400 032. Date:April 23, 2019

To.

Mr. Sanket .D. Nigudkar

at Plot No. A-2, MIDC Kurkumbh, Taluka -Daund, Pune

Subject: Environment Clearance for Environment Clearance for Environmental Clearance for proposed expansion of M/s. Halides Chemicals Pvt. Ltd from 636.00 MT/Year to 4142.89 MT/Year

Sir,

This has reference to your communication on the above mentioned subject. The proposal was considered as per the EIA Notification - 2006, by the State Level Expert Appraisal Committee-I, Maharashtra in its 157th (A)th meeting and recommend the project for prior environmental clearance to SEIAA. Information submitted by you has been considered by State Level Environment Impact Assessment Authority in its 163rd meetings.

2. It is noted that the proposal is considered by SEAC-I under screening category Category B: 5 (f) as per EIA Notification 2006.

Brief Information of the project submitted by you is as below:-

1.Name of Project	M/s. Halides Chemicals Pvt. Ltd.					
2.Type of institution	Private					
3.Name of Project Proponent	Mr. Sanket .D. Nigudkar					
4.Name of Consultant	Building Environment (India) Pvt. Ltd.					
5.Type of project	Industrial Estate-Industry 5 (f) Category					
6.New project/expansion in existing project/modernization/diversification in existing project	Expansion in existing project					
7.If expansion/diversification, whether environmental clearance has been obtained for existing project	No, As per the EIA Notification the existing project does not need Environmental Clearance					
8.Location of the project	Plot No. A-2, MIDC Kurkumbh, Taluka -Daund, Pune					
9.Taluka	Daund					
10.Village	Not Applicable					
Correspondence Name:	Mr. Sanket .D. Nigudkar					
Room Number:	Not Applicable					
Floor:	Not Applicable					
Building Name:	Neelashri					
Road/Street Name:	Off Paud Road					
Locality:	Kothrud					
City:	Pune					
11.Whether in Corporation / Municipal / other area	Kurkumbh MIDC Area					
40.700.700.40	No Industry has applied for revised layout					
12.IOD/IOA/Concession/Plan Approval Number	IOD/IOA/Concession/Plan Approval Number: Plan Approval No. SWC/66/3/20160417/396347					
**	Approved Built-up Area: 2227.81					

SEIAA Meeting No: 163 Meeting Date: April 2, 2019 (SEIAA-STATEMENT-0000000762) SEIAA-MINUTES-0000001796 SEIAA-EC-0000001458 Com-

|| Shri. Anil Diggikar (Member Secretary || SEIAA)

Page 1 of 15

13.Note on the initiated work (If applicable)	It is an already existing industry and is in operation since 1995. No activity has been initiated for the proposed expansion.
14.LOI / NOC / IOD from MHADA/ Other approvals (If applicable)	NA
15.Total Plot Area (sq. m.)	4050.00 Sq. m.
16.Deductions	Not applicable
17.Net Plot area	4050.00 Sq. m.
	FSI area (sq. m.): 2227.81
18 (a).Proposed Built-up Area (FSI & Non-FSI)	Non FSI area (sq. m.): Not Applicable
	Total BUA area (sq. m.): 2227.81
	Approved FSI area (sq. m.): 2227.81
18 (b).Approved Built up area as per DCR	Approved Non FSI area (sq. m.): NA
	Date of Approval: 30-06-2010
19.Total ground coverage (m2)	1478.8
20.Ground-coverage Percentage (%) (Note: Percentage of plot not open to sky)	36% विवाधिक
21.Estimated cost of the project	90500000

Page 2 of 15

			22.F	Product	ion Details		
Serial Number	Pro	duct	Existin	g (MT/M)	Proposed (MT/M)	Total (MT/M)	
1	N- Bromos	succinimide	36	60.00	420.00	780.00	
2	N-Chloros	succinimide	24	-0.00	-120	120	
3	N-Iodosu	ıccinimide	30	6.00	00	36.00	
4	cyano-4-B	OTBN (2- romomethyl nenyl)	0	0.00	600.0	600.0	
5	2-Bromopr	opionic Acid	0	0.00	180.0	180.0	
6	Propiony	l bromide	0	0.00	180.0	180.0	
7	N- Hexy	l bromide	1 0	.00	240.0	240.0	
8		Butyl acetate	Try	.00	240.0	240.0	
9		Bromide ution	0	.00	966.00	966.00	
10		n Bromide 1 in water	5 0	.00	695.00	695.00	
11	Spent	: Iodine C		.00	21.52	21.52	
12	phospho	rous Acid	0	.00	84.36	84.36	
		2 2	3.Tota	l Water	Requirement		
		Source of w	ater	MIDC	75	B	
		Fresh water	r (CMD):	58.9	S R		
		Recycled was		0.00		The state of the s	
		Recycled was		6.0	मुझा और		
Swimming p make up (Cu Total Water Requiremen : Fire fighting Underground tank(CMD):			NA NA				
				73.7			
		Undergrou	nd water 20.0		ment	10	
		Fire fightin Overhead w tank(CMD)	ater	NA	achtı	12	
		Excess trea	ted water	NA			

	Source of water	MIDC	
	Fresh water (CMD):	58.9	
	Recycled water - Flushing (CMD):	0.00	
	Recycled water - Gardening (CMD):	0.00	
	Swimming pool make up (Cum):	NA	
Wet season:	Total Water Requirement (CMD):	67.7	
	Fire fighting - Underground water tank(CMD):	20.0	
	Fire fighting - Overhead water tank(CMD):	NATARIES	
	Excess treated water	6.0	
Details of Swimming pool (If any)	Swimming pool not applicable		

		24	.Detail	s of Tota	l water co	nsume	d			
Particula rs	Cons	Consumption (CMD)		Loss (CMD)			Effluent (CMD)			
Water Require ment	Existing	Proposed	Total	Existing	Proposed	Total	Existing	Proposed	Total	
Domestic	5.0	0	5.0	0.5	Nil	0.5	4.5	0	4.5	
Cooling tower & thermopa ck	42.55	6.54	49.09	41.62	6.39	48.01	0.94	0.14	1.08	
Industrial Process	6.9	6.7	13.6	0.25	0.25	0.5	5.5	7.6	13.1	
Gardening	2.0	4.0	6.0	2.0	4.0	6.0	0.0	0.0	0.0	
Fresh water requireme nt	45.64	13.24	58.89	34.7	5.5	40.21	5.5	8.7	14.2	
•		TY.	0.		6	30	(C)			
	Level of the Ground water table: Size and no of RWH tank(s) and Quantity:		1.18-1.98m							
			1 tank of 2.5m*2.5m*3.20m; Volume-20,000 Lit							
		Location of t tank(s):	he RWH	Behind parking near M.S.E.B yard						
25.Rain V	Vater	Quantity of r	echarge	Not Applicable						
Harvestir (RWH)	ng	Size of recha:	rge pits	Not Applicable						
		Budgetary al (Capital cost		100000						
		Budgetary al (O & M cost)		12002						
Details of UGT tanks if any:		Two UG tanks are installed: UG water tank of 30,000 Litres capacity is installed for domestic use UG water tanks of 20,000 Litres capacity is installed for fire fighting purpose								
26.6:		Natural wate drainage pat		Yes	28	NT I	ra			
26.Storm drainage	water	Quantity of s water:	torm	24.15 m3/hr.						
		Size of SWD:		width -340 mm; depth-260 mm						

<u> </u>	Sewage generation in KLD:	4.5KLD
	STP technology:	Currently having Septic tank. Industry has proposed STP with MBBR Technology for proposed expansion
27.Sewage and	Capacity of STP (CMD):	1 (Proposed)- 15 CMD
Waste water	Location & area of the STP:	Behind L.D.O storage/furnace oil tank
	Budgetary allocation (Capital cost):	85.0 Lakh (Existing +Proposed)
	Budgetary allocation (O & M cost):	6 Lakh (Existing +Proposed)

28.Solid waste Management					
TA7	Waste generation:	Construction debris			
Waste generation in the Pre Construction and Construction phase:	Disposal of the construction waste debris:	Industry is already in operation. PP has proposed construction of sheds, storage tanks. Waste likely to generate is concrete which will be very less. The waste will be utilised within site for internal roads, higher plinth and filling low laying areas.			
	Dry waste:	Paper bags: 21000 Nos./Y, Fibre Drum with Lids- 19632 Nos./Y, HDPE Drums -5220 Nos./Y			
	Wet waste:	No wet waste is generated			
Waste generation in the operation Phase:	Hazardous waste:	Used/Spent oil- 900 lit/Y; Spent catalyst- 8000Kg/Y; Chemical sludge from wastewater treatment- 500 ton/Y; Salt Solution- 78 ton/Y; Contaminated cotton rags or other cleaning materials- 180kg/Y; Empty barrels/containers- 1680 Nos/Y			
	Biomedical waste (If applicable):	No Bio-medical waste is generated			
	STP Sludge (Dry sludge):	0.32Ton/Y			
	Others if any:	Not Applicable			
	Dry waste:	Paper bags and fibre drums will be sold to Authorized recycler; HDPE drums will be used to refill byproduct; STP sludge will be used as manure			
	Wet waste:	Not Applicable			
Mode of Disposal of waste:	Hazardous waste:	Used spent oil will be disposed off to Authorized Re-processor; Spent Catalyst, Chemical sludge from waste water and salt solution will be disposed to CHWTSDF, Contaminated cotton rags or other cleaning materials & Empty barrels/containers will be sent to Authorized recycler			
	Biomedical waste (If applicable):	Not Applicable			
	STP Sludge (Dry sludge):	Will be used as manure			
	Others if any:	Not Applicable			
	Location(s):	Near STP plant; Behind Boiler room			
Area requirement:	Area for the storage of waste & other material:	Separate Hazardous Waste storage area, Segregated metallic scrap yard, Segregated paper and plastic scrap yard is made for storage of waste			
	Area for machinery:	Not Applicable			
Budgetary allocation	Capital cost:	1 lakh			
(Capital cost and O&M cost):	O & M cost:	0.5 lakh			
	IVIAII	arasiilia			

	29.Effluent Charecterestics							
Serial Number	Parameters	Unit	Unit Inlet Effluent Outlet Effluent Effluent Charecterestics Charecterestics standard					
1	рН	NA	7.14	6.2	5.5-9.0			
2	TSS	mg/Lit	87.0	12.0	<=100.0			
3	BOD	mg/Lit	6800.0	<10.0	<=100.011			
4	COD	mg/Lit	24666.67	26.67	<=250.0			
5	Sulphates	mg/Lit	2015.0	4.10	<1000			
6	Chlorides	mg/Lit	7448.67	3.43	<=600			
Amount of e	effluent generation	14.2 CMD						
Capacity of	the ETP:	16.0 CMD						
Amount of trecycled:	reated effluent	8.8 CMD add86						
Amount of water send to the CETP: Waste water generated in industry is recycled and used for various gardening etc.				various other processes,				
Membershi	p of CETP (if require):	Yes; Industr	ry has obtained CETP me	embership				
Note on ET	P technology to be used	Industry ha	s provided RO + MEE of	capacity 16.0 CMD				
Disposal of	the ETP sludge	ETP sludge	generated will be dispos	ed to CHWTSDF				

		30.На	azardous	Waste D	etails		
Serial Number	Description	Cat	UOM	Existing	Proposed	Total	Method of Disposal
1	Used/Spent Oil	5.1	Lit/Y	800	100	900	Autho. Re-processor
2	Spent catalyst/Spent carbon	28.2	Kg/Y	3600	4400	8000	CHWTSDF
3	Chemical Sludge from wastwater treatment	35.3	Ton./Y	360	140	500	CHWTSDF
4	Salt Solution	26.1	Ton/y	Nil	78	78	CHWTSDF
5	Contaminated cotton rags or other cleaning materials	33.2	kg/y	Nil	180	180	Authorized Recycler
6	Empty barrels/containers	33.1	Nos./y	Nil	1680	1680	Authorized Recycler
	7	31.S	tacks em	ission D	etails	7	
Serial Number	Section & units		Jsed with antity	Stack No.	Height from ground level (m)	Internal diameter (m)	Temp. of Exhaust Gases
1	Boiler 750kg/Hr		e Oil; 1450 t/Day	1	19.5	0.254	137
2	Boiler+Thermopack 600 kg/Hr	LDO; 10	LDO; 1000 Lit/Day 1			0.254	110
3	Bromination/Chlorination	n Not a	pplicable	1	6	0.1016	54
4	Imide Formation	Not A	pplicable	1	4.5	NA	NA
5	Drying Section	Not A	pplicable	1	4.5	NA	NA
6	D. G Set 160 KVA	E	iesel	1	3	0.1016	112
7	Boiler 1000kg/hr		e Oil; 1728 t/Day	मुक्र	28	0.300	180
		32.De	tails of I	Fuel to be	e used		
Serial Number	Type of Fuel Existing			Wh.	Proposed		Total
1	Diesel		37 Lit/Hr		Nil		37 Lit/Hr
2	L.D.O	1000 Lit/Day			Nil		1000 Lit/Day
3	Furnace Oil	V	1450 Lit/Day	7	1728 Lit/Day		3178 Lit/Day
33.Source	of Fuel	Indus	stry /Market	•	_		
34 Modo of	Transportation of fuel to	site Fuel	is brought to	site by tank	ore	40	

35.Energy

	Source of power supply:	MSEDCL
	During Construction Phase: (Demand Load)	Not applicable as industry is already under operation
	DG set as Power back-up during construction phase	Industry is having D. G. Set of 160KVA (Existing DG Set of 62.5 KVA shall be replaced by 160 KVA)
Power	During Operation phase (Connected load):	140 KW
requirement:	During Operation phase (Demand load):	150 KW (Existing -120 KW +Proposed 30 KW)
	Transformer:	200 KVA
	DG set as Power back-up during operation phase:	160 KVA (Existing DG Set of 62.5 KVA shall be replaced by 160 KVA)
	Fuel used:	37 Lit/Hr
	Details of high tension line passing through the plot if any:	No No

Energy saving by non-conventional method:

Halides Chemicals have taken the effort to use natural resources available such as solar heat and light. They have installed solar water heating system which gives heated water for boiler input so that the fuel load of the boiler reduces thereby reducing the pollution. The industry is also using solar street light to lighten up the internal road.

36.Detail calc	ulations & %	of saving:
----------------	--------------	------------

Serial Number	Energy Conservation Measures	Saving %
1	Reduction in energy consumption	8-10%
2	Reduce in fuel consumption	10-11%

37. Details of pollution control Systems

Source		Existing pollution cont	rol system	Proposed to be installed		
DG Set 160 KVA	Ac	coustic enclosure with add	equate height	Not applicable		
Boiler 1 [750 kg/hr]		Adequate heigh	nt	Not applicable		
Boiler +Thermopack 600 kg		Adequate heigh	nt 2 1 2	Not applicable		
Chlorine Section	Leakage Alarm System			Not applicable		
Bromine Section	Leakage Alarm System		stem	Not applicable		
Boiler 1000kg/hr	Adequate height			Not applicable		
Budgetary allocation		Capital cost:	1320000			
(Capital cos		O & M cost:	50000			

38. Environmental Management plan Budgetary Allocation

SEIAA Meeting No: 163 Meeting Date: April 2, 2019 (SEIAA-STATEMENT-0000000762) SEIAA-MINUTES-0000001796 SEIAA-EC-0000001458

Page 10 of 15

Shri. Anil Diggikar (Member Secretary SEIAA)

a) Construction phase (with Break-up):					
Serial Number	Attributes Parameter Total Cost per annum (Rs. In Lacs)				
1	Not Applicable as industry is already under operation	NA	NA		

b) Operation Phase (with Break-up):

	*	-	= 1			
Serial Number	Component	Description	Capital cost Rs. In Lacs	Operational and Maintenance cost (Rs. in Lacs/yr)		
1	Air Pollution Control System	Existing +Proposed cost	15	1		
2	Water Pollution Control Systems (ETP + STP)	Existing +Proposed Cost	85.0	6		
3	Noise Pollution Control	Existing +Proposed	9.0	0.50		
4	Green Belt Development / Maintenances	Exiting +Proposed	2.0	0.25		
5	Environmental Monitoring/Environmental Management	Exiting +Proposed	0.00	2.0		
6	Occupational health and safety	Exiting +Proposed	4.0	1.5		
7	Solid Waste Management	Exiting +Proposed	1.0	0.5		
8	Rain Water Harvesting	Exiting +Proposed	1.0	0.12		
9	Energy Saving Measures	Exiting +Proposed	13.20	0.50		

39.Storage of chemicals (inflamable/explosive/hazardous/toxic substances)

Description	Status	Location	Storage Capacity in MT	Maximum Quantity of Storage at any point of time in MT	Consumption / Month in MT	Source of Supply	Means of transportation
Acetic Acid	Liquid	Proposed Storage	2.0	2.0	2.9	Industry/Market	By Road
Chlorine	Gas	900kg Tonner	0.9	0.9	5.35	Industry/Market	By Road
OTBN	Solid	RM Store	9.0	9.0	40.3	Industry/Market	By Road
AIBN	Solid	RM Store	0.1	0.1	1.35	Industry/Market	By Road
Propionic Acid	Liquid	RM Store	5.0	5.0	15.74	Industry/Market	By Road
Red Phosphorous	Solis	RM Store	1.0	1.0	1.59	Industry/Market	By Road
Phospohrous Tribromide	Liquid	RM Store	1.0	1.0	9.9	Industry/Market	By Road
n-Hexanol	Liquid	RM Store	1.0	1.0	13.02	Industry/Market	By Road
Acetyl Bromide	Liquid	RM Store	1.0	1.0	13.62	Industry/Market	By Road
Tert Butanol	Liquid	RM Store	5.0	5.0	7.6	Industry/Market	By Road
НЗРОЗ	Solid	RM Store	2.0	2.0	4.0	Industry/Market	By Road
Diesel	Liquid	DG Set Tank	0.4	0.4	08	Industry/Market	By Road
Furnace Oil	Liquid	FO Tank	10.0	10.0	45.0	Industry/Market	By Road
LDO	Liquid	LDO Storage	5.0	5.0	10.0	Industry/Market	By Road
Methylene Dichloride	Liquid	Near HBr Storage Tnank	10.0	10.0	59.24	Industry/Market	By Road
Caustic Soda Iye	Solid	Storage Tank	17.0	17.0	22.75	Industry/Market	By Road

SEIAA Meeting No: 163 Meeting Date: April 2, 2019 (SEIAA-STATEMENT-0000000762) SEIAA-MINUTES-0000001796 SEIAA-EC-0000001458

Page 11 of Shri. Anil Diggikar (Member Secretary SEIAA)

Ethylene Dichloride	Liquid	Storage Tank	12.5	12.5	10.69	Industry/Market	By Road
Sulphuric Acid	Liquid	Storage Tank	10.0	10.0	21.66	Industry/Market	By Road
Succinic Acid	Solid	Proposed Shed	20	20	82.56	Industry/Market	By Road
Iodine	Crystalline Solid	Proposed Shed	0.5	0.5	3.6	Industry/Market	By Road
Liquid Bromine	Liquid	Proposed Storage Shed	10.80	10.80	87.45	Industry/Market	By Road
Sodium Bromate	Solid	Proposed Storage Shed	4.0	4.0	26.4	Industry/Market	By Road
Succinimide	Solid	Proposed Storage	5.0	5.0	67.12	Industry/Market	By Road

40.Any Other Information

No Information Available

CRZ/ RRZ clearance obtain, if any:	Not Applicable
Distance from Protected Areas / Critically Polluted areas / Eco-sensitiv areas/ inter-State boundaries	No protected areas near project site
Category as per schedule of EIA Notification sheet	Category B: 5 (f)
Court cases pendin if any	Not Applicable
Other Relevant Informations	Not Applicable
Have you previousl submitted Application online on MOEF Website.	Yes
Date of online submission	24-08-2017

3. The proposal has been considered by SEIAA in its 163rd meeting & decided to accord environmental clearance to the said project under the provisions of Environment Impact Assessment Notification, 2006 subject to implementation of the following terms and conditions:

Specific Conditions:

I	PP to submit design details of the scrubber to achieve out let exposure levels of bromine gas below the TLV level.
II	PP proposes zero liquid discharge, therefore PP to ensure that no effluent is discharged to the CETP.
III	PP to include water foot print and carbon foot print monitoring in the EMP.
IV	PP to prepare and implement CER plan in consultation with the District Authorities as mentioned in the OM dated 01.05.2018
V	PP to ensure to comply with the conditions stipulated in the Office Memorandum issued by MoEF&CC dated 9th August, 2018.
VI	PP to submit CER plan to collector Pune and submit the acknowledgement copy to submitted to Member Secretary, SEIAA.

General Conditions:

I	(i)PP to achieve Zero Liquid Discharge ; PP shall ensure that there is no increase in the effluent load to CETP.
II	No additional land shall be used /acquired for any activity of the project without obtaining proper permission.
III	PP to take utmost precaution for the health and safety of the people working in the unit as also for protecting the environment.
IV	Proper Housekeeping programmers shall be implemented.
V	In the event of the failure of any pollution control system adopted by the unit, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieve.
VI	A stack of adequate height based on DG set capacity shall be provided for control and dispersion of pollutant from DG set. (If applicable).
VII	A detailed scheme for rainwater harvesting shall be prepared and implemented to recharge ground water.
VIII	Arrangement shall be made that effluent and storm water does not get mixed.
IX	Periodic monitoring of ground water shall be undertaken and results analyzed to ascertain any change in the quality of water. Results shall be regularly submitted to the Maharashtra Pollution Control Board.
X	Noise level shall be maintained as per standards. For people working in the high noise area, requisite personal protective equipment like earplugs etc. shall be provided.

SEIAA Meeting No: 163 Meeting Date: April 2, 2019 (SEIAA-STATEMENT-0000000762) SEIAA-MINUTES-0000001796 SEIAA-EC-0000001458 Page 13 of Shri. Anil Diggika

Shri. Anil Diggikar (Member Secretary SEIAA)

XI	The overall noise levels in and around the plant are shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures, etc. on all sources of noise generation. The ambient noise levels shall confirm to the standards prescribed under Environment (Protection) Act, 1986 Rules, 1989.			
XII	Green belt shall be developed & maintained around the plant periphery. Green Belt Development shall be carried out considering CPCB guidelines including selection of plant species and in consultation with the local DFO/ Agriculture Dept.			
XIII	Adequate safety measures shall be provided to limit the risk zone within the plant boundary, in case of an accident. Leak detection devices shall also be installed at strategic places for early detection and warning.			
XIV	Occupational health surveillance of the workers shall be done on a regular basis and record maintained as per Factories Act.			
XV	(The company shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling.			
XVI	The project authorities must strictly comply with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Waste (Management and Handling) Rules, 2003 (amended). Authorization from the MPCB shall be obtained for collections/treatment/storage/disposal of hazardous wastes.			
XVII	Regular mock drills for the on-site emergency management plan shall be carried out. Implementation of changes / improvements required, if any, in the on-site management plan shall be ensured.			
XVIII	A separate environment management cell with qualified staff shall be set up for implementation of the stipulated environmental safeguards.			
XIX	Separate funds shall be allocated for implementation of environmental protection measures/EMP along with item-wise breaks-up. These cost shall be included as part of the project cost. The funds earmarked for the environment protection measures shall not be diverted for other purposes and year-wise expenditure should reported to the MPCB & this department			
XX	The project management shall advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the marathi language of the local concerned within seven days of issue of this letter, informing that the project has been accorded environmental clearance and copies of clearance letter are available with the Maharashtra Pollution Control Board and may also be seen at Website at http://ec.maharashtra.gov.in			
XXI	Project management should submit half yearly compliance reports in respect of the stipulated prior environment clearance terms and conditions in hard & soft copies to the MPCB & this department, on 1st June & 1st December of each calendar year.			
XXII	A copy of the clearance letter shall be sent by proponent to the concerned Municipal Corporation and the local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the Company by the proponent.			
XXIII	The proponent shall upload the status of compliance of the stipulated EC conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; SPM, RSPM. SO2, NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the project shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.			
XXIV	The project proponent shall also submit six monthly reports on the status of compliance of the stipulated EC conditions including results of monitored data (both in hard copies as well as by e-mail) to the respective Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB.			
XXV	The environmental statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of EC conditions and shall also be sent to the respective Regional Offices of MoEF by e-mail.			

- 4. The environmental clearance is being issued without prejudice to the action initiated under EP Act or any court case pending in the court of law and it does not mean that project proponent has not violated any environmental laws in the past and whatever decision under EP Act or of the Hon'ble court will be binding on the project proponent. Hence this clearance does not give immunity to the project proponent in the case filed against him, if any or action initiated under EP Act.
- 5. In case of submission of false document and non-compliance of stipulated conditions, Authority/ Environment Department will revoke or suspend the Environment clearance without any intimation and initiate appropriate legal action under Environmental Protection Act, 1986.
- 6. The Environment department reserves the right to add any stringent condition or to revoke the clearance if conditions stipulated are not implemented to the satisfaction of the department or for that matter, for any other administrative reason.
- 7. Validity of Environment Clearance: The environmental clearance accorded shall be valid as per EIA Notification, 2006, and amendments by MoEF&CC Notification dated 29th April, 2015.
- 8. In case of any deviation or alteration in the project proposed from those submitted to this department for clearance, a fresh reference should be made to the department to assess the adequacy of the condition(s) imposed and to incorporate additional environmental protection measures required, if any.
- 9. The above stipulations would be enforced among others under the Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and rules there under, Hazardous Wastes (Management and Handling) Rules, 1989 and its amendments, the public Liability Insurance Act, 1991 and its amendments.
- 10. Any appeal against this Environment clearance shall lie with the National Green Tribunal (Western Zone Bench, Pune), New Administrative Building, 1stFloor, D-, Wing, Opposite Council Hall, Pune, if preferred, within 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.

Shri. Anil Diggikar (Member Secretary SEIAA)

Copy to:

- 1. SECRETARY MOEF & CC
- 2. IA- DIVISION MOEF & CC
- 3. MEMBER SECRETARY MAHARASHTRA POLLUTION CONTROL BOARD MUMBAI
- 4. REGIONAL OFFICE MOEF & CC NAGPUR
- 5. MUNICIPAL COMMISSIONER PUNE
- 6. MUNICIPAL COMMISSIONER SATARA
- 7. REGIONAL OFFICE MPCB PUNE
- 8. REGIONAL OFFICE MIDC PUNE
- 9. MAHARASHTRA STATE ELECTRICITY DISTRIBUTION CO. LTD
- 10. COLLECTOR OFFICE PUNE
- 11. COLLECTOR OFFICE SATARA
- 12. COLLECTOR OFFICE SOLAPUR

aharashtra

Shri. Anil Diggikar (Member Secretary SEIAA)